Time Integrations


Effective velocity, or phase velocity, for analytical and numerical time integration respectively:

vef=λIk=ϕkΔt;ϕ=arctan(GIGR)v_{ef}= \left| \frac{\lambda_I}{k} \right|=\left| \frac{\phi}{k\Delta t} \right|\quad;\quad\phi=\arctan \left( \frac{G_I}{G_R} \right)

Contents

Explicit Euler

un+1=un+ΔtF(un,tn) ⁣du ⁣dttn=F(un,tn)=Fn\begin{gathered} \mathbf u^{n+1}=\mathbf u^n+\Delta t\mathbf F(\mathbf u^n,t_n)\\ \left. \frac{\dd u}{\dd t} \right|_{t_n}=F(u^n,t_n)=F^n \end{gathered}

The gain is, assuming F=λuF=\lambda u:

G=uu+1un=un+Δtλunun=1+ΔtλG=\frac{u^{u+1}}{u^n}=\frac{u^n+\Delta t\lambda u^n}{u^n}=1+\Delta t\lambda
  • 1st order scheme

Implicit Euler

un+1=un+ΔtF(un+1,tn+1)\mathbf u^{n+1}=\mathbf u^n+\Delta t\mathbf F(\mathbf u^{n+1},t_{n+1})

The gain is:

un+1Δλun+1=unG=un+1un=11Δtλu^{n+1}-\Delta\lambda u^{n+1}=u^n\quad \rightarrow \quad G=\frac{u^{n+1}}{u^n}=\frac{1}{1-\Delta t\lambda}
  • 1st order scheme

Crank-Nicolson

Time discretization with tn+1/2t_{n+1/2}:

un+1=un+Δt2(F(un,tn)+F(un+1,tn+1))\mathbf u^{n+1}=\mathbf u^n+\frac{\Delta t}{2}(\mathbf F(\mathbf u^n,t_n)+\mathbf F(\mathbf u^{n+1},t_{n+1}))

The gain is:

G=1+Δtλ/21Δtλ/2G=\frac{1+\Delta t\lambda/2}{1-\Delta t\lambda/2}
  • 2nd order scheme

Rugen-Kutta Schemes

Multiphase scheme. Schemes from 2 to 4 phases:

un+1=un+12(k1+k2)un+1=un+16(k1+4k2+k3)un+1=un+16(k1+2k2+2k3+k4)\begin{aligned} \mathbf u^{n+1}&=\mathbf u^n+\frac{1}{2}(\mathbf k_1+\mathbf k_2)\\ \mathbf u^{n+1}&=\mathbf u^n+\frac{1}{6}(\mathbf k_1+4\mathbf k_2+\mathbf k_3)\\ \mathbf u^{n+1}&=\mathbf u^n+\frac{1}{6}(\mathbf k_1+2\mathbf k_2+2\mathbf k_3+\mathbf k_4) \end{aligned}

The gain depends on the number of phases:

G=1+Δtλ+12!(Δtλ)2+13!(Δtλ)3+14!(Δtλ)4G=1+\Delta t\lambda+\frac{1}{2!}(\Delta t\lambda)^2+\frac{1}{3!}(\Delta t\lambda)^3+\frac{1}{4!}(\Delta t\lambda)^4